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Abstract

This paper presents the explicit forms of singular electro-mechanical field in a piezoelectric bonded wedge subjected
to antiplane shear loads. Based on the complex potential function associated with eigenfunction expansion method, the
eigenvalue equations are derived analytically. Contrary to the anisotropic elastic bonded wedge, the results of this
problem show that the singularity orders are single-root and may be complex. The stress intensity factors of electrical
and mechanical fields are dependent. However, when the wedge angles are equal (« = ), the orders become real and
double-root. The real stress intensity factors of electrical and mechanical fields are then independent. The angular
functions have been validated when they are compared with the results of several degenerated cases in open literatures.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the electro-mechanical coupling behavior, piezoelectric materials (e.g. lead zirconate titanate
(PZT)) are widely used in various application fields (Parton and Kudryavtsev, 1988; Gandhi and
Thompson, 1992; Uchino, 1997). Several typical structures shown in Fig. 1 can be found in transducers,
wave filters, sensors, resonators and actuators. The piezoelectric materials are bonded to composite ma-
terials, electrode thin film, or piezoelectric materials. The local region marked by dotted circle is considered
as a wedge. Because of the discontinuities of material properties and geometry, the stresses at the apex of
the wedge may go to infinite. Failures such as crack will initiate from that point since the piezoelectric
material is brittle.

The singularity problems near the apex of isotropic or anisotropic wedge have been widely investigated
(e.g. Bogy, 1968, 1971; Theocaris, 1974; Ma and Hour, 1989; Chen and Nisitani, 1992, 1993). The singular
stress fields can be expressed as follows:
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Fig. 1. Several typical wedge structures in actuators. (a) Piezoelectric—piezoelectric wedges; (b) piezoelectric-composite wedges;
(c) piezoelectric-conductor wedges; (d) debonded junctions involving piezoelectric materials.

a3;(r, 0) = Ky £;5(0) (1)

where A is the stress singularity orders, f;;(0) the angular function and K; the stress intensity factors. The
order 4, which is obtained from the root of the determinant of the characteristic matrix, may be real or
complex. If 7 is a double root, the stresses near the apex of the wedge may exhibit logarithm-type singu-
larity depending on the rank of the characteristic matrix (Dempsey and Sinclair, 1979). The factors K;; may
also be real or complex. Based on the Mellin transform or the eigenfunction expansion method, the order 4
and the angular function f;; are obtained analytically. However, the determination of the stress intensity
factors is more complicated. It depends on the remote geometry and loading conditions and the numerical
methods are required. For example, Munz and Yang (1993) employed the finite element method to com-
pute the stress intensity factors when the singularity order and the angular functions are pre-determined
analytically. In this approach, the angular functions play an important role because the validity of the
computed intensity factors has to be examined for different angle 0.

It is known that the piezoelectric-elastic problems can be decoupled into inplane and antiplane problems if
the poling axis is parallel or perpendicular to x—y plane (Fig. 2). The inplane problems of singular electro-
mechanical fields near the apex of a bonded wedge have been solved when the poling axis is in x—y plane
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Fig. 2. Two-material bonded wedge.

(Xu and Rajapakse, 2000; Chue and Chen, 2002). Chue and Chen (2003) investigated the piezoelectric
bonded wedge under various boundary conditions by using the Mellin transform. The poling axis is directed
along z-axis and the antiplane shear stresses (zy.,7,.) are coupled with the inplane electrical fields (D,, Dy).

Based on the complex functions and eigenfunction expansion, the singular electro-mechanical fields for a
piezoelectric bonded wedge are analyzed in this study. The boundary conditions at both edges of wedge are
traction free and electrically insulated. It is a specific case in Chue and Chen (2003). However, Chue and
Chen (2003) only derived the antiplane stress singularity orders and the singular electro-mechanical fields
near the apex of the wedge were not included. Two cases with o = ff and « # f are discussed separately in
this study. Most emphasis is placed on the intensity factors, angular functions and the conditions that the
antiplane singularity order is complex. The results are different from the case of an anisotropic bonded
wedge under antiplane shear (Ma and Hour, 1989), in which the orders are always real.

2. Basic formulations

The constitutive equation for antiplane field of a piezoelectric medium is given as follows

Ty Cy 0 0 —€15 Yoz
T | _ | 0 Cu —es O Ve
Dr - 0 €1s €11 0 Er (2)
Dy es 0 0 &1l Ey

where (ty,, 7,.) are the shear stresses, (y,,, 7,.) the shear strains, (D,, Dy) the electric displacement, (E,, Ey) the
electric field strength, Cy4 the elastic modulus at constant electric field, e;s the piezoelectric constant, and &,
the dielectric permitivity at constant strains. The static equilibrium equations and Maxwell’s equation
under electro-static condition are given as
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0 6102 -
a (rfrz) + E =0 (33)
0 0Dy
Pty =0 (3b)
The strain—displacement and electric field—electric potential relations are as follows:
C_w 1w 00 L 100 "
T TR0 T T T TR a0
where w and @ are the displacement and electric potential, respectively. Combination of Egs. (2)-(4) yields
C44V2W — e15V2(15 =0 (58_)
615V2W+811v2(p =0 (Sb)

where V2 = 02/3r% + (1/r)0/0r + (1/r%)2% /007 is the Laplacian operator in polar coordinates. Define two
analytical complex functions ¥ and ¢ related to w and @ as

w = Re[P(z2)] (6a)
® = Re[$(2)] (6b)

where z = re!’. It is noted that Eq. (6) satisfies Eq. (5) automatically. In the eigenfunction expansion
method, the complex functions are expressed as

¥ = brie? + bytel (7a)
¢ = byr'e! + byt (7b)
where b;(i = 1,...,4) are undetermined complex constants. The constant / is the eigenvalue. Combination
of Egs. (2), (4), (6) and (7) yields
w = Re[r*(c; cos(10) + ¢, sin(10))] (8a)
@ = Re[r*(c3 cos(10) + c4sin(10))] (8b)
Tp, = Re[/lr;'il (C44Cz COS(/’{H) — C44C] Sll‘l(i@) + ejs5¢q COS()“G) — €15C3 Sln()“g))] (80)
7. = Re[r* ™! (Cuycy cos(10) + Cyyca sin(A0) + ejsc; cos(20) + ejscq sin(10))] (8d)
Dg = Re[ir’l’l (615(32 COS(;LO) — €15C1 Sln()LO) — &11C4 COS(/IO) + €113 Sln().()))] (86)
D,. = Re[}fii] (61501 COS()»G) + eq5¢; sin(ﬂﬂ) — &11C3 COS(&H) — &11C4 SIH(AH))] (8f)
Ey = —Re[lr* (¢4 cos(20) — c35in(20))] (8g)
E, = —Re[Ar" ! (c3 cos(10) 4 c4sin(10))] (8h)

where cp = bl + 1_72, Cy = 1(b1 — 52), Cc3 = b3 + 54, and Cy = 1(b3 — 54)
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3. Dissimilar piezoelectric bonded wedge

Consider a two-bonded piezoelectric wedge as shown in Fig. 2. The wedge angles of piezoelectric ma-
terials 1 and 2 are denoted as « and f, respectively. Let the bonded interface be x-axis. The conditions at the
boundary edges are assumed to be free of traction and electrically insulated:

o (r,0) = 70 (r. ) = Dy (r.2) = D (r, =) = 0 )
The continuity conditions at the bonded interface are

o (r,0) = 72 (,0), W (r,0) = w?(7,0), w0
DY (r,0) = DY (r,0), EW(r,0) = E(r,0)

The superscripts 1 and 2 in Egs. (9) and (10) denote the materials 1 and 2, respectively. Substituting Eq. (8)
into Egs. (9) and (10), it gives an 8 x 8 homogeneous system as follows:

(M]{x} = {0} (11)

where {X} = [c"), ¢V, eV " el e ¢ elP]T. The 8 x 8 matrix [M] is composed of the coefficients of ¢!
to cff). It is function of the eigenvalue 4, the wedge angles, and the material properties. Two cases of « = f§

and o # 8 are considered here to determine the singular electro-mechanical field.

3.1. Equal wedge angles (0. = )

Substituting # = « in det[M] = 0, the characteristic equation becomes:
sin’(202) = 0 (12)
Since sin®(24) # 0 under the restrictions of 0 < Re[4] < 1 and 0 < <, Eq. (12) can be rewritten as
cos*(ad) =0 (13)

It is seen that 1 is always real and a double-root. By using Eq. (13), we find that the rank of the charac-
teristic matrix [M] is 6. Then the singularity is #*~! type (Dempsey and Sinclair, 1979). There are two in-
dependent constants in Eq. (11), say cgl) and cf"). The other constants related to cg) and cy) are as follows

a a
NCI 48 Dy 28 (b (14a)
Area4g — 28046 Ar6d4g — A28046
a a
C‘(‘z) _ 46 0(21> _ 26 Ho) (14b)
Ar6a4g — A2gd46 Ar6d4g — A28046
cgw = cgw = c(lz) = ng) =0 (14c)
where
1) ,2) (2) (1)
doe — _ E15€I5 + Cys ey (15a)
07 0, A0
ejsejs + 0y ey
@) (1) 1) (2)
ele —eie
(g = — (15 11 15 “11 (15b)

D (1 D (1
615>e§5) + Cé(l4)8§1)
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(2) (1) 1) ,(2)
g = Culis —Cuers (15¢)
(1) (M) (1) (1)
ejsers +Cueg
12 (1) ,(2)
dus = _eses Gy (15d)
1 _m (1) (1)
ejse;s + Cyeg

Substituting Eq. (14) into Eq. (8), the stresses and electric displacements can be expressed in the forms:

5. = Kr*~' cos(/0) (16a)
6. = K7 sin(40) (16b)
Dy = K2 cos(10) (16¢)
D, = K~ sin(20) (16d)

where K° and KP are called the generalized stress and electric displacement intensity factors, respectively.
They are defined as

K’ = /”L(Cf‘i)cgl) + e§§>cil)) (17a)
1 1 1 1
K2 = (el — el (17b)
For an interface crack, i.e. « = ==, the stress singularity order is Re[4 — 1] = —0.5 and the angular

functions are cos(0/2) and sin(6/2). The results are consistent with previous studies (e.g., Pak, 1990; Li and
Fan, 2000).

Eq. (13) can be applied in the case of one material wedge. The singular electro-elastical fields and in-
tensity factors are Eqs. (16) and (17) with dropping the superscript 1.

3.2. Unequal wedge angles o #
In this section, we consider the case of dissimilar piezoelectric bonded wedge with § # «. Here we exclude

the condition that « = 0 or # = 0, which is equivalent to the case that one material wedge discussed in the
above section. After elementary row operations on Eq. (11), it becomes

_ )

1000000  —M/QN) €4 0

0100000 —1/(Q.N) < 0

0010000 ~M/N ¢’ 0

0001000 ~1/N 'l _Jo (18)
00007100 —M/(Q.N) )0

0000010 ~1/0. B 0

000000 1 ~M/N o 0

000000 0 1/@M-1/@M]| 5 0

where
0. =— Cly sin(2a) cos(2B) + CL5 cos(Aa) sin(24f) (19a)

e§15> sin(Aa) cos(4f) + e%) cos(Aa) sin(Af)
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_ e\ sin(2a) cos(2f) + €% cos(4x) sin(4f)

0= 8<1]1) sin(Aa) cos(4f8) + 8225) cos(Au) sin(/4f3) (19b)
_ cos(Ax)

M= sin(Ao) (19¢)
_ cos(Au)sin(4p)
~ sin(Ja) cos(4f) (194)

In the derivation of Eq. (18), we have used the conditions « # f§ and e;s # 0. Consequently, O, and Q,
cannot be zero. For nontrivial solution, it requires that

Substituting Eq. (19) into Eq. (20), we obtain the characteristic equation
R, sinz[(oc —P)A + sinz[(oc + )] — Rysinf(a + p)A] sin[(o — f)A] = 0 (21)
where
By + By — By — By
R, = 22a
"7 B+ By + B + By (222)
2B, — 2B
R2 _ 22 11 (22b)
Bi1 + By + Bix + By
with
B = edes + ey Cyf (23a)
Biy = ejfel? + &) CY (23b)
By = ejlely + &7 Cly (23c)
By =eflely +e7 (23d)

Egs. (21)—(23) are exactly the same as Chue and Chen (2003), in which the Mellin transform was used. Since
the rank of [M] in Eq. (18) is 7, it is a #*~! type singularity (Dempsey and Sinclair, 1979). Eq. (21) can be
rewritten into the following two equations:

sin[( + B)2] + 4; sinf[(x — f)A] =0 (24a)

sin[(o + B)A] + 4z sinf[(o — f)4] =0 (24b)
where

Al:_RZ+— \/;3%—4]21’ Az:_RZ*— V§§4R1 (25)

The constants 4; and A4, are functions of the material properties and may be complex depending on
(R3 — 4R,). Thus, the eigenvalues A may be complex, i.e., if R3 —4R; >0, then Z is real; otherwise 2 is
complex. This is quite different from the anisotropic bonded wedge subjected to antiplane shear, in which
the singularity orders are always real (Ma and Hour, 1989).
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In the following, two cases of real and complex eigenvalues are discussed. The materials used are three
typical piezo-ceramics, say PZT-4, PZT-5 and PZT-19. Their material properties are (Berlincourt et al.,
1964; Parton and Kudryavtsev, 1988):

PZT-4: Cyy = 25.6 x 10° N/m?, e;5 = 12.7 C/N, ¢;; = 6.46 x 10~ F/m
PZT-5: C44 =21.1x 109 N/mz, e|s = 12.3 C/N, €11 = 8.11 x 1079 F/m
PZT-19: Cyy = 24.9 x 10° N/m?, e;5 = 9.45 C/N, ¢;; = 7.257 x 10~° F/m

3.2.1. Case (1): Real eigenvalues A

Consider an example of a PZT-4-PZT-5 bonded wedge that the factor (R3 — 4R;) = 0.0223035 > 0. The
eigenvalues are real. Fig. 3 plots the contours of the strongest singularity order at different wedge angles o
and f. The orders are close to —0.5 when o + § = 360°, i.e. the bonded wedge forms an interface crack. In
addition, the singularity disappears in a region with o + < 180°.

S(izr}ce the rank of [M] is 7, only one, say 0(2”, left undetermined for the eight unknown constants cﬁl)
toc,’.

Define the generalized stress and electrical intensity factors K° and K? as follows:

1 1 .
N I

K= (il +efyo) et —
i+ dlo

(26)

360 A
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240 -
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Fig. 3. The variation of the strongest singularity order of PZT-4-PZT-5 bonded wedges versus the wedge angles « and f.
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The stresses and electric displacements can be derived as

T, = K"r"_lfgz(e), T, = K"r)'_lfrz(ﬂ)

. . 27
Dy = KPr*'gy(0), D,=K"r""g.(0) 27)

where f;.(0), f,-(0), g29(0) and g,(0) are the angular function for stresses and electrical displacements fields.
They can be written as:

cos(40) — Z?;((;Z)) sin(40) for material 1
J0:(0) = £0(0) = COS(/:L ) . . (28)
cos(40) + SnUp) sin(40) for material 2

sin(40) + Cf)s((%a)) cos(40) for material 1
£=(0) = g(0) = costif) (29)

sin(A0) — Sn0) cos(A0) for material 2

Fig. 4 plots the angular functions of a PZT-4-PZT-5 bonded wedge with « = 90° and f = 180°. The
strongest singularity order Re[4; — 1] is —0.347478. According to the boundary conditions (Eq. (9)) and
continuity conditions (Eq. (10)), the angular functions fy.(6), and gy(6) are continuous along the bonded
interface 6 = 0° and vanish at the boundary edges 6 = 90° and —180°.

L i L L i A i i
1.2 —=
1 = -
0.8 = L
0.6 =4 -
fo:(0) or g4(6)
0.4 = N
[
.0
H 0.2 =
c
=]
& 0 = / "
o V4
D 02 ’ =
g .
0.4 = /I frz (0) or gr (6) o
'
V4
-0.6 = V4 -
V4
V4
-0.8 =4 ,/ -
4
R4
=1 - -
»
L o ™ -
-1.2 1 T T T T T T T
-180 -150 -120 -90 -60 -30 0 30 60 90
0 (degree)

Fig. 4. The variations of the angular functions of the PZT-4-PZT-5 bonded wedge with wedge angles o = 90° and f = 180°
(A —1=-0.347478).
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3.2.2. Case (2): Complex eigenvalues A

Consider another example of a PZT-4-PZT-19 bonded wedge that the factor (R —4R;)=
—0.0246464 < 0. The eigenvalues are complex. Figs. 5 and 6 show the contours of the strongest singularity
order of real and imaginary parts, respectively. The variations of the real part are similar to the previous
Case (1). The imaginary parts of the singularity order vanish only when oo = 8, « = 0 and f# = 0.

There is only one independent variable, say cg), left for the eight unknown constants c(ll) to cf). From
Eq. (18), we have:

cgl) =Mc(21>, cgl) = Sc(21>, cil) = chl), c§2) = Mcgl)7 c(22> = Nc(21>, cf) = Sc(zl),

Cf) _ Tc(zl) (30)
where the constants S and 7' are defined as

S=MQ, T=NQ (31)
Substituting Eq. (30) into Eq. (8), the stresses and the electric displacements become the forms:

7 = ' {[cos(qlog r)fy; + sin(qlogr)f;.]K, + [cos(qlogr)fy, — sin(qlogr)fi KT, } (32a)

7. = 1"~ '{[cos(qlogr)f;; + sin(qlogr)f KR, + [cos(qlogr)f;. — sin(qlogr)f]KT, } (32b)

Dy = 1"~ {[cos(qlogr)g; + sin(qlog r)g;] Ky, + [cos(qlogr)g; — sin(qlog r)gjl Ky, } (32¢)

D, = " {[eos(qlogr)g: + sin(glog r)gl]KR, + [cos(glogr)g; — sin(qlog r)g:IKD} (324)

360
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270 1

240 41

210 -

180 <

[ (degree)

150 <

120 4

90 4
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30 1

O T T T T T T T T T T T L]

120 150 180 210 240 270 300 330 360

o
W
o
(%]
o
©
o
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Fig. 5. The variation of the strongest singularity order (real part) of PZT-4-PZT-19 bonded wedges versus the wedge angles « and f.
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Fig. 6. The variation of the strongest singularity order (imaginary part) of PZT-4-PZT-19 bonded wedges versus the wedge angles
o and f.

Where p and ¢ are the real and imaginary parts of (4 = p + ig), respectively. The intensity factors K3, K7,
K., and KP and angular functions £ (0), f.(0), £<(0), 1(0), g5(0), g5(0), g(0), and g*(0) are all real-
valued. The intensity factors are defined as

K§. +iK7. = pRe[CY) + ¢V 0lc)” (33a)
Relel) _ oD
K2 +ikP = Refers — &, 0] (KS, +iK7.) (33b)

Re[Cy/ +¢170)

Since c(zl) is an arbitrary complex constant, the generalized stress intensity factors (Kg., K{) are two in-
dependent variables. Therefore, there are two undetermined and independent constants in the stresses and
electric displacements fields. The angular functions in Eq. (32) have the forms:

A +eldo J
( ha a ) cos(40) — C?s—(ﬂ) sin(40)| for material 1
] sin(Ao)

(1) (1)
o PRe[Cy) + 150
Jo. — . = (34a)

et + el
pRe 44 +el5
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(e +4vo)

IS S T [sin(i@) + C9S(Aa) cos(i@)} for material 1
e _ i _ ) PRe[Cy +ei5 0 sin( o)
S = ), 0 (34b)
/1<C44 tegs Q) cos(1f) .
—— . | sin(40) — (18 cos(40)| for material 2
PRe[Cy + €50 in(/p)
Alel) —eVo ,
w [COS(M) - C.OSM sin(w)} for material 1
¢ s pRefel) — &) 0] sin(Ao)
8y — 18y = (34c)
2 () (1)
A( 15 — &1 Q) cos(Af) . .
S0 DA cos(A0) + ——=sin(40)| for material 2
pRele}s — &, 0] sin(Af)
etV — s(l)Q p
M [sin(w) + M cos(w)} for material 1
. Relelt — &V 0] sin(Ao)
g-in=3" 0" (34d)
;“(els — &y Q) cos(Ap) ) .
U sin(A0) — N cos(A0)| for material 2
pRelejs — &) O] s

It is verified that £ (0), f;.(0), g;(0) and g}(0) are continuous across the interface and vanish at the edges
while f<(0), f5(0), g5(0) and g(0) are not.

The formulations derived in this section are based on the assumptions that o = ff and e;s # 0. In the case
of o = f3, the characteristic equation (Eq. (24)) and the electro-mechanical field (Eq. (27) for 4 is real; Eq.
(32) for Ais complex) can be reduced to Egs. (12) and (16) discussed in Section 3.1 by using the perturbation
method. Similarly, using the perturbation method to the case of e;s = 0, the characteristic equation (Eq.
(24)) and the electro-mechanical fields (Eq. (32)) derived in this section can be reduced to the following

characteristic equation

Cfvl‘) sin(Ao) cos(Af) + Cﬁ> cos(Aa) sin(Af) =0 (35a)

s(lll) sin(4a) cos(4f8) + 8521) cos(4a) sin(Af) =0 (35b)

and the decoupled electro-mechanical field

. = K1 £,.(0) (36a)
1. = K" £,2(0) (36b)
Dy = KPr* ' g4(0) (37a)
D, = K"r"'g,(0) (37b)

where the angular functions f..(0) and g;(0), i =r, 0, have the same forms in Egs. (28) and (29). The
characteristic equation (Eq. (35)) and the stress field (Eq. (36)) are identical to the results derived by Ma and
Hour (1989). The procedures of the proof are lengthy and will not be stated in this paper.
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4. Conclusions

In this paper, the explicit forms of singular electro-mechanical field for a piezoelectric bonded wedge
subjected to antiplane shear have been derived analytically. Because of the piezoelectric effect, the singular
behavior is different from that of an elastic bonded wedge. The conclusions are summarized as follows:

1. The singularity order of a piezoelectric bi-material bonded wedge is always complex if the following three
conditions hold simultaneously: (a) A; and 4, are both complex; (b) o # f; and (c) both « and f§ are non-
zero. If at least one condition does not hold, the singularity order is real. It is quite different from an
elastic bonded wedge, in which the antiplane singularity orders are always real.

2. If o = B, the singularity order is always real. In addition, the eigenvalue is a double-root and the rank of
the characteristic matrix [M] is 6. Therefore, there are two independent intensity factors (K° and K?) in
the electro-mechanical field. The present solutions are compared well with the case of an interface crack
between two piezoelectric materials.

3. Since the rank of the characteristic matrix [M] is 7 for o # f3, the stress and electrical displacement inten-
sity factors are dependent on each other.

4. The electro-mechanical field of case o # f§ can be reduced to the cases of & = f and/or ¢;5 =0 by
using the perturbation method. When e;5 = 0, the wedge is decoupled into the electrical and mechanical
fields. The results are exactly the same as the antiplane singular field of an isotropic bonded wedge.
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