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Abstract

This paper presents the explicit forms of singular electro-mechanical field in a piezoelectric bonded wedge subjected

to antiplane shear loads. Based on the complex potential function associated with eigenfunction expansion method, the

eigenvalue equations are derived analytically. Contrary to the anisotropic elastic bonded wedge, the results of this

problem show that the singularity orders are single-root and may be complex. The stress intensity factors of electrical

and mechanical fields are dependent. However, when the wedge angles are equal (a ¼ b), the orders become real and

double-root. The real stress intensity factors of electrical and mechanical fields are then independent. The angular

functions have been validated when they are compared with the results of several degenerated cases in open literatures.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the electro-mechanical coupling behavior, piezoelectric materials (e.g. lead zirconate titanate
(PZT)) are widely used in various application fields (Parton and Kudryavtsev, 1988; Gandhi and

Thompson, 1992; Uchino, 1997). Several typical structures shown in Fig. 1 can be found in transducers,

wave filters, sensors, resonators and actuators. The piezoelectric materials are bonded to composite ma-

terials, electrode thin film, or piezoelectric materials. The local region marked by dotted circle is considered

as a wedge. Because of the discontinuities of material properties and geometry, the stresses at the apex of

the wedge may go to infinite. Failures such as crack will initiate from that point since the piezoelectric

material is brittle.

The singularity problems near the apex of isotropic or anisotropic wedge have been widely investigated
(e.g. Bogy, 1968, 1971; Theocaris, 1974; Ma and Hour, 1989; Chen and Nisitani, 1992, 1993). The singular

stress fields can be expressed as follows:
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Fig. 1. Several typical wedge structures in actuators. (a) Piezoelectric–piezoelectric wedges; (b) piezoelectric–composite wedges;

(c) piezoelectric–conductor wedges; (d) debonded junctions involving piezoelectric materials.
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rijðr; hÞ ¼ Kijrk�1fijðhÞ ð1Þ
where k is the stress singularity orders, fijðhÞ the angular function and Kij the stress intensity factors. The

order k, which is obtained from the root of the determinant of the characteristic matrix, may be real or

complex. If k is a double root, the stresses near the apex of the wedge may exhibit logarithm-type singu-

larity depending on the rank of the characteristic matrix (Dempsey and Sinclair, 1979). The factors Kij may

also be real or complex. Based on the Mellin transform or the eigenfunction expansion method, the order k
and the angular function fij are obtained analytically. However, the determination of the stress intensity

factors is more complicated. It depends on the remote geometry and loading conditions and the numerical

methods are required. For example, Munz and Yang (1993) employed the finite element method to com-

pute the stress intensity factors when the singularity order and the angular functions are pre-determined

analytically. In this approach, the angular functions play an important role because the validity of the

computed intensity factors has to be examined for different angle h.
It is known that the piezoelectric-elastic problems can be decoupled into inplane and antiplane problems if

the poling axis is parallel or perpendicular to x–y plane (Fig. 2). The inplane problems of singular electro-
mechanical fields near the apex of a bonded wedge have been solved when the poling axis is in x–y plane
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Fig. 2. Two-material bonded wedge.
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(Xu and Rajapakse, 2000; Chue and Chen, 2002). Chue and Chen (2003) investigated the piezoelectric
bonded wedge under various boundary conditions by using the Mellin transform. The poling axis is directed

along z-axis and the antiplane shear stresses (shz,srz) are coupled with the inplane electrical fields ðDr;DhÞ.
Based on the complex functions and eigenfunction expansion, the singular electro-mechanical fields for a

piezoelectric bonded wedge are analyzed in this study. The boundary conditions at both edges of wedge are

traction free and electrically insulated. It is a specific case in Chue and Chen (2003). However, Chue and

Chen (2003) only derived the antiplane stress singularity orders and the singular electro-mechanical fields

near the apex of the wedge were not included. Two cases with a ¼ b and a 6¼ b are discussed separately in

this study. Most emphasis is placed on the intensity factors, angular functions and the conditions that the
antiplane singularity order is complex. The results are different from the case of an anisotropic bonded

wedge under antiplane shear (Ma and Hour, 1989), in which the orders are always real.
2. Basic formulations

The constitutive equation for antiplane field of a piezoelectric medium is given as follows
shz

srz
Dr

Dh

8>><
>>:

9>>=
>>;

¼

C44 0 0 �e15
0 C44 �e15 0

0 e15 e11 0

e15 0 0 e11

2
664

3
775

chz

crz
Er

Eh

8>><
>>:

9>>=
>>;

ð2Þ
where (shz, srz) are the shear stresses, (chz, crz) the shear strains, (Dr, Dh) the electric displacement, (Er, Eh) the

electric field strength, C44 the elastic modulus at constant electric field, e15 the piezoelectric constant, and e11
the dielectric permitivity at constant strains. The static equilibrium equations and Maxwell�s equation

under electro-static condition are given as
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o

or
ðrsrzÞ þ

oshz

oh
¼ 0 ð3aÞ
o

or
ðrDrÞ þ

oDh

oh
¼ 0 ð3bÞ
The strain–displacement and electric field–electric potential relations are as follows:
crz ¼
ow
or

; chz ¼
1

r
ow
oh

; Er ¼ � oU
or

; Eh ¼ � 1

r
oU
oh

ð4Þ
where w and U are the displacement and electric potential, respectively. Combination of Eqs. (2)–(4) yields
C44r2w� e15r2U ¼ 0 ð5aÞ
e15r2wþ e11r2U ¼ 0 ð5bÞ
where r2 ¼ o2=or2 þ ð1=rÞo=or þ ð1=r2Þo2=oh2 is the Laplacian operator in polar coordinates. Define two

analytical complex functions W and / related to w and U as
w ¼ Re½WðzÞ	 ð6aÞ
U ¼ Re½/ðzÞ	 ð6bÞ
where z ¼ reih. It is noted that Eq. (6) satisfies Eq. (5) automatically. In the eigenfunction expansion

method, the complex functions are expressed as
W ¼ b1rkeikh þ b2r
�kkei

�kkh ð7aÞ
/ ¼ b3rkeikh þ b4r
�kkei

�kkh ð7bÞ
where biði ¼ 1; . . . ; 4Þ are undetermined complex constants. The constant k is the eigenvalue. Combination

of Eqs. (2), (4), (6) and (7) yields
w ¼ Re½rkðc1 cosðkhÞ þ c2 sinðkhÞÞ	 ð8aÞ
U ¼ Re½rkðc3 cosðkhÞ þ c4 sinðkhÞÞ	 ð8bÞ
shz ¼ Re½krk�1ðC44c2 cosðkhÞ � C44c1 sinðkhÞ þ e15c4 cosðkhÞ � e15c3 sinðkhÞÞ	 ð8cÞ
srz ¼ Re½krk�1ðC44c1 cosðkhÞ þ C44c2 sinðkhÞ þ e15c3 cosðkhÞ þ e15c4 sinðkhÞÞ	 ð8dÞ
Dh ¼ Re½krk�1ðe15c2 cosðkhÞ � e15c1 sinðkhÞ � e11c4 cosðkhÞ þ e11c3 sinðkhÞÞ	 ð8eÞ
Dr ¼ Re½krk�1ðe15c1 cosðkhÞ þ e15c2 sinðkhÞ � e11c3 cosðkhÞ � e11c4 sinðkhÞÞ	 ð8fÞ
Eh ¼ �Re½krk�1ðc4 cosðkhÞ � c3 sinðkhÞÞ	 ð8gÞ
Er ¼ �Re½krk�1ðc3 cosðkhÞ þ c4 sinðkhÞÞ	 ð8hÞ
where c1 ¼ b1 þ �bb2, c2 ¼ iðb1 � �bb2Þ, c3 ¼ b3 þ �bb4, and c4 ¼ iðb3 � �bb4Þ.
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3. Dissimilar piezoelectric bonded wedge

Consider a two-bonded piezoelectric wedge as shown in Fig. 2. The wedge angles of piezoelectric ma-

terials 1 and 2 are denoted as a and b, respectively. Let the bonded interface be x-axis. The conditions at the
boundary edges are assumed to be free of traction and electrically insulated:
sð1Þhz ðr; aÞ ¼ sð2Þhz ðr;�bÞ ¼ Dð1Þ
h ðr; aÞ ¼ Dð2Þ

h ðr;�bÞ ¼ 0 ð9Þ
The continuity conditions at the bonded interface are
sð1Þhz ðr; 0Þ ¼ sð2Þhz ðr; 0Þ; wð1Þðr; 0Þ ¼ wð2Þðr; 0Þ;
Dð1Þ

h ðr; 0Þ ¼ Dð2Þ
h ðr; 0Þ; Eð1Þ

r ðr; 0Þ ¼ Eð2Þ
r ðr; 0Þ

ð10Þ
The superscripts 1 and 2 in Eqs. (9) and (10) denote the materials 1 and 2, respectively. Substituting Eq. (8)

into Eqs. (9) and (10), it gives an 8
 8 homogeneous system as follows:
½M 	fXg ¼ f0g ð11Þ
where fXg ¼ ½cð1Þ1 ; cð1Þ2 ; cð1Þ3 ; cð1Þ4 ; cð2Þ1 ; cð2Þ2 ; cð2Þ3 ; cð2Þ4 	T. The 8
 8 matrix ½M 	 is composed of the coefficients of cð1Þ2

to cð2Þ4 . It is function of the eigenvalue k, the wedge angles, and the material properties. Two cases of a ¼ b
and a 6¼ b are considered here to determine the singular electro-mechanical field.
3.1. Equal wedge angles (a ¼ b)

Substituting b ¼ a in det½M 	 ¼ 0, the characteristic equation becomes:
sin2ð2akÞ ¼ 0 ð12Þ
Since sin2ðakÞ 6¼ 0 under the restrictions of 0 < Re½k	 < 1 and 0 < a6 p, Eq. (12) can be rewritten as
cos2ðakÞ ¼ 0 ð13Þ
It is seen that k is always real and a double-root. By using Eq. (13), we find that the rank of the charac-

teristic matrix ½M 	 is 6. Then the singularity is rk�1 type (Dempsey and Sinclair, 1979). There are two in-

dependent constants in Eq. (11), say cð1Þ2 and cð1Þ4 . The other constants related to cð1Þ2 and cð1Þ4 are as follows
cð2Þ2 ¼ � a48
a26a48 � a28a46

cð1Þ2 þ a28
a26a48 � a28a46

cð1Þ4 ð14aÞ

cð2Þ4 ¼ a46
a26a48 � a28a46

cð1Þ2 � a26
a26a48 � a28a46

cð1Þ4 ð14bÞ

cð1Þ1 ¼ cð1Þ3 ¼ cð2Þ1 ¼ cð2Þ3 ¼ 0 ð14cÞ

where
a26 ¼ � eð1Þ15 e
ð2Þ
15 þ Cð2Þ

44 eð1Þ11

eð1Þ15 e
ð1Þ
15 þ Cð1Þ

44 eð1Þ11

ð15aÞ

a28 ¼ � eð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11

eð1Þ15 e
ð1Þ
15 þ Cð1Þ

44 eð1Þ11

ð15bÞ



6518 C.D. Chen, C.H. Chue / International Journal of Solids and Structures 40 (2003) 6513–6526
a46 ¼ �Cð2Þ
44 e

ð1Þ
15 � Cð1Þ

44 e
ð2Þ
15

eð1Þ15 e
ð1Þ
15 þ Cð1Þ

44 eð1Þ11

ð15cÞ

a48 ¼ � eð1Þ15 e
ð2Þ
15 þ Cð1Þ

44 eð2Þ11

eð1Þ15 e
ð1Þ
15 þ Cð1Þ

44 eð1Þ11

ð15dÞ
Substituting Eq. (14) into Eq. (8), the stresses and electric displacements can be expressed in the forms:
shz ¼ Krrk�1 cosðkhÞ ð16aÞ

srz ¼ Krrk�1 sinðkhÞ ð16bÞ

Dh ¼ KDrk�1 cosðkhÞ ð16cÞ

Dr ¼ KDrk�1 sinðkhÞ ð16dÞ

where Kr and KD are called the generalized stress and electric displacement intensity factors, respectively.

They are defined as
Kr ¼ k Cð1Þ
44 c

ð1Þ
2

�
þ eð1Þ15 c

ð1Þ
4

�
ð17aÞ

KD ¼ k eð1Þ15 c
ð1Þ
2

�
� eð1Þ11 c

ð1Þ
4

�
ð17bÞ
For an interface crack, i.e. a ¼ b ¼ p, the stress singularity order is Re½k � 1	 ¼ �0:5 and the angular

functions are cosðh=2Þ and sinðh=2Þ. The results are consistent with previous studies (e.g., Pak, 1990; Li and

Fan, 2000).
Eq. (13) can be applied in the case of one material wedge. The singular electro-elastical fields and in-

tensity factors are Eqs. (16) and (17) with dropping the superscript 1.

3.2. Unequal wedge angles a 6¼ b

In this section, we consider the case of dissimilar piezoelectric bonded wedge with b 6¼ a. Here we exclude

the condition that a ¼ 0 or b ¼ 0, which is equivalent to the case that one material wedge discussed in the

above section. After elementary row operations on Eq. (11), it becomes
1 0 0 0 0 0 0 �M=ðQcNÞ
0 1 0 0 0 0 0 �1=ðQcNÞ
0 0 1 0 0 0 0 �M=N
0 0 0 1 0 0 0 �1=N
0 0 0 0 1 0 0 �M=ðQcNÞ
0 0 0 0 0 1 0 �1=Qc

0 0 0 0 0 0 1 �M=N
0 0 0 0 0 0 0 1=ðQeNÞ � 1=ðQcNÞ

2
66666666664

3
77777777775

cð1Þ1

cð1Þ2

cð1Þ3

cð1Þ4

cð2Þ1

cð2Þ2

cð2Þ3

cð2Þ4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

0

0

0

0

0

0
0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð18Þ
where
Qc ¼ �Cð1Þ
44 sinðkaÞ cosðkbÞ þ Cð2Þ

44 cosðkaÞ sinðkbÞ
eð1Þ15 sinðkaÞ cosðkbÞ þ eð2Þ15 cosðkaÞ sinðkbÞ

ð19aÞ
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Qe ¼
eð1Þ15 sinðkaÞ cosðkbÞ þ eð2Þ15 cosðkaÞ sinðkbÞ
eð1Þ11 sinðkaÞ cosðkbÞ þ eð2Þ15 cosðkaÞ sinðkbÞ

ð19bÞ

M ¼ cosðkaÞ
sinðkaÞ ð19cÞ

N ¼ � cosðkaÞ sinðkbÞ
sinðkaÞ cosðkbÞ ð19dÞ
In the derivation of Eq. (18), we have used the conditions a 6¼ b and e15 6¼ 0. Consequently, Qc and Qe

cannot be zero. For nontrivial solution, it requires that
Qc ¼ Qe 
 Q ð20Þ
Substituting Eq. (19) into Eq. (20), we obtain the characteristic equation
R1 sin
2½ða � bÞk	 þ sin2½ða þ bÞk	 � R2 sin½ða þ bÞk	 sin½ða � bÞk	 ¼ 0 ð21Þ
where
R1 ¼
B11 þ B22 � B12 � B21

B11 þ B22 þ B12 þ B21

ð22aÞ

R2 ¼
2B22 � 2B11

B11 þ B22 þ B12 þ B21

ð22bÞ
with
B11 ¼ eð1Þ15 e
ð1Þ
15 þ eð1Þ11 C

ð1Þ
44 ð23aÞ

B12 ¼ eð1Þ15 e
ð2Þ
15 þ eð1Þ11 C

ð2Þ
44 ð23bÞ

B21 ¼ eð2Þ15 e
ð1Þ
15 þ eð2Þ11 C

ð1Þ
44 ð23cÞ

B22 ¼ eð2Þ15 e
ð2Þ
15 þ eð2Þ11 C

ð2Þ
44 ð23dÞ
Eqs. (21)–(23) are exactly the same as Chue and Chen (2003), in which the Mellin transform was used. Since

the rank of ½M 	 in Eq. (18) is 7, it is a rk�1 type singularity (Dempsey and Sinclair, 1979). Eq. (21) can be

rewritten into the following two equations:
sin½ða þ bÞk	 þ A1 sin½ða � bÞk	 ¼ 0 ð24aÞ

sin½ða þ bÞk	 þ A2 sin½ða � bÞk	 ¼ 0 ð24bÞ
where
A1 ¼ �R2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 � 4R1

p
2

; A2 ¼ �R2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 � 4R1

p
2

ð25Þ
The constants A1 and A2 are functions of the material properties and may be complex depending on

(R2
2 � 4R1). Thus, the eigenvalues k may be complex, i.e., if R2

2 � 4R1 P 0, then k is real; otherwise k is
complex. This is quite different from the anisotropic bonded wedge subjected to antiplane shear, in which

the singularity orders are always real (Ma and Hour, 1989).



6520 C.D. Chen, C.H. Chue / International Journal of Solids and Structures 40 (2003) 6513–6526
In the following, two cases of real and complex eigenvalues are discussed. The materials used are three

typical piezo-ceramics, say PZT-4, PZT-5 and PZT-19. Their material properties are (Berlincourt et al.,

1964; Parton and Kudryavtsev, 1988):

PZT-4: C44 ¼ 25:6
 109 N/m2, e15 ¼ 12:7 C/N, e11 ¼ 6:46
 10�9 F/m

PZT-5: C44 ¼ 21:1
 109 N/m2, e15 ¼ 12:3 C/N, e11 ¼ 8:11
 10�9 F/m

PZT-19: C44 ¼ 24:9
 109 N/m2, e15 ¼ 9:45 C/N, e11 ¼ 7:257
 10�9 F/m

3.2.1. Case (1): Real eigenvalues k
Consider an example of a PZT-4–PZT-5 bonded wedge that the factor ðR2

2 � 4R1Þ ¼ 0:0223035 > 0. The

eigenvalues are real. Fig. 3 plots the contours of the strongest singularity order at different wedge angles a
and b. The orders are close to )0.5 when a þ b ¼ 360�, i.e. the bonded wedge forms an interface crack. In
addition, the singularity disappears in a region with a þ b5180�.

Since the rank of ½M 	 is 7, only one, say cð1Þ2 , left undetermined for the eight unknown constants cð1Þ1

to cð2Þ4 .

Define the generalized stress and electrical intensity factors Kr and KD as follows:
F

Kr ¼ k Cð1Þ
44

�
þ eð1Þ15 Q

�
cð1Þ2 ; KD ¼

eð1Þ15 � eð1Þ11 Q
� �

Kr

Cð1Þ
44 þ eð1Þ15 Q

ð26Þ
ig. 3. The variation of the strongest singularity order of PZT-4–PZT-5 bonded wedges versus the wedge angles a and b.
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The stresses and electric displacements can be derived as
Fig. 4

(k � 1
shz ¼ Krrk�1fhzðhÞ; srz ¼ Krrk�1frzðhÞ
Dh ¼ KDrk�1ghðhÞ; Dr ¼ KDrk�1grðhÞ

ð27Þ
where fhzðhÞ, frzðhÞ, ghðhÞ and grðhÞ are the angular function for stresses and electrical displacements fields.
They can be written as:
fhzðhÞ ¼ ghðhÞ ¼
cosðkhÞ � cosðkaÞ

sinðkaÞ sinðkhÞ for material 1

cosðkhÞ þ cosðkbÞ
sinðkbÞ sinðkhÞ for material 2

8>><
>>:

ð28Þ

frzðhÞ ¼ grðhÞ ¼
sinðkhÞ þ cosðkaÞ

sinðkaÞ cosðkhÞ for material 1

sinðkhÞ � cosðkbÞ
sinðkbÞ cosðkhÞ for material 2

8>><
>>:

ð29Þ
Fig. 4 plots the angular functions of a PZT-4–PZT-5 bonded wedge with a ¼ 90� and b ¼ 180�. The
strongest singularity order Re½k1 � 1	 is )0.347478. According to the boundary conditions (Eq. (9)) and

continuity conditions (Eq. (10)), the angular functions fhzðhÞ, and ghðhÞ are continuous along the bonded

interface h ¼ 0� and vanish at the boundary edges h ¼ 90� and �180�.
. The variations of the angular functions of the PZT-4–PZT-5 bonded wedge with wedge angles a ¼ 90� and b ¼ 180�
¼ �0:347478).
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3.2.2. Case (2): Complex eigenvalues k
Consider another example of a PZT-4–PZT-19 bonded wedge that the factor ðR2

2 � 4R1Þ ¼
�0:0246464 < 0. The eigenvalues are complex. Figs. 5 and 6 show the contours of the strongest singularity

order of real and imaginary parts, respectively. The variations of the real part are similar to the previous
Case (1). The imaginary parts of the singularity order vanish only when a ¼ b, a ¼ 0 and b ¼ 0.

There is only one independent variable, say cð1Þ2 , left for the eight unknown constants cð1Þ1 to cð2Þ4 . From

Eq. (18), we have:
Fig. 5.
cð1Þ1 ¼ Mcð1Þ2 ; cð1Þ3 ¼ Scð1Þ2 ; cð1Þ4 ¼ Qcð1Þ2 ; cð2Þ1 ¼ Mcð1Þ2 ; cð2Þ2 ¼ Ncð1Þ2 ; cð2Þ3 ¼ Scð1Þ2 ;

cð2Þ4 ¼ Tcð1Þ2 ð30Þ
where the constants S and T are defined as
S ¼ MQ; T ¼ NQ ð31Þ

Substituting Eq. (30) into Eq. (8), the stresses and the electric displacements become the forms:
shz ¼ rp�1 ½cosðq log rÞf c
hz

�
þ sinðq log rÞf s

hz	Kr
Re þ ½cosðq log rÞf s

hz � sinðq log rÞf c
hz	Kr

Im

�
ð32aÞ

srz ¼ rp�1f½cosðq log rÞf c
rz þ sinðq log rÞf s

rz	Kr
Re þ ½cosðq log rÞf s

rz � sinðq log rÞf c
rz	Kr

Img ð32bÞ

Dh ¼ rp�1f½cosðq log rÞgch þ sinðq log rÞgsh	KD
Re þ ½cosðq log rÞgsh � sinðq log rÞgch	KD

Img ð32cÞ

Dr ¼ rp�1f½cosðq log rÞgcr þ sinðq log rÞgsr	KD
Re þ ½cosðq log rÞgsr � sinðq log rÞgcr 	KD

Img ð32dÞ
The variation of the strongest singularity order (real part) of PZT-4–PZT-19 bonded wedges versus the wedge angles a and b.



Fig. 6. The variation of the strongest singularity order (imaginary part) of PZT-4–PZT-19 bonded wedges versus the wedge angles

a and b.
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where p and q are the real and imaginary parts of kðk ¼ p þ iqÞ, respectively. The intensity factors Kr
Re, K

r
Im,

KD
Re, and KD

Im and angular functions f c
hzðhÞ, f s

hzðhÞ, f c
rzðhÞ, f s

rzðhÞ, gchðhÞ, gshðhÞ, gcrðhÞ, and gsrðhÞ are all real-

valued. The intensity factors are defined as
Kr
Re þ iKr

Im ¼ pRe½Cð1Þ
44 þ eð1Þ15 Q	c

ð1Þ
2 ð33aÞ

KD
Re þ iKD

Im ¼ Re½eð1Þ15 � eð1Þ11 Q	
Re½Cð1Þ

44 þ eð1Þ15 Q	
ðKr

Re þ iKr
ImÞ ð33bÞ
Since cð1Þ2 is an arbitrary complex constant, the generalized stress intensity factors (Kr
Re, K

r
Im) are two in-

dependent variables. Therefore, there are two undetermined and independent constants in the stresses and

electric displacements fields. The angular functions in Eq. (32) have the forms:
f c
hz � if s

hz ¼

k Cð1Þ
44 þ eð1Þ15 Q

� �

pRe½Cð1Þ
44 þ eð1Þ15 Q	

cosðkhÞ � cosðkaÞ
sinðkaÞ sinðkhÞ

� �
for material 1

k Cð1Þ
44 þ eð1Þ15 Q

� �

pRe½Cð1Þ
44 þ eð1Þ15 Q	

cosðkhÞ þ cosðkbÞ
sinðkbÞ sinðkhÞ

� �
for material 2

8>>>>>><
>>>>>>:

ð34aÞ
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f c
rz � if s

rz ¼

k Cð1Þ
44 þ eð1Þ15 Q

� �

pRe½Cð1Þ
44 þ eð1Þ15 Q	

sinðkhÞ þ cosðkaÞ
sinðkaÞ cosðkhÞ

� �
for material 1

k Cð1Þ
44 þ eð1Þ15 Q

� �

pRe½Cð1Þ
44 þ eð1Þ15 Q	

sinðkhÞ � cosðkbÞ
sinðkbÞ cosðkhÞ

� �
for material 2

8>>>>><
>>>>>:

ð34bÞ
gch � igsh ¼

k eð1Þ15 � eð1Þ11 Q
� �

pRe½eð1Þ15 � eð1Þ11 Q	
cosðkhÞ � cosðkaÞ

sinðkaÞ sinðkhÞ
� �

for material 1

k eð1Þ15 � eð1Þ11 Q
� �

pRe½eð1Þ15 � eð1Þ11 Q	
cosðkhÞ þ cosðkbÞ

sinðkbÞ sinðkhÞ
� �

for material 2

8>>>>><
>>>>>:

ð34cÞ
gcr � igsr ¼

k eð1Þ15 � eð1Þ11 Q
� �

pRe½eð1Þ15 � eð1Þ11 Q	
sinðkhÞ þ cosðkaÞ

sinðkaÞ cosðkhÞ
� �

for material 1

k eð1Þ15 � eð1Þ11 Q
� �

pRe½eð1Þ15 � eð1Þ11 Q	
sinðkhÞ � cosðkbÞ

sinðkbÞ cosðkhÞ
� �

for material 2

8>>>>><
>>>>>:

ð34dÞ
It is verified that f c
hzðhÞ, f s

hzðhÞ, gchðhÞ and gshðhÞ are continuous across the interface and vanish at the edges
while f c

rzðhÞ, f s
rzðhÞ, gcrðhÞ and gsrðhÞ are not.

The formulations derived in this section are based on the assumptions that a 6¼ b and e15 6¼ 0. In the case

of a ¼ b, the characteristic equation (Eq. (24)) and the electro-mechanical field (Eq. (27) for k is real; Eq.

(32) for k is complex) can be reduced to Eqs. (12) and (16) discussed in Section 3.1 by using the perturbation

method. Similarly, using the perturbation method to the case of e15 ¼ 0, the characteristic equation (Eq.

(24)) and the electro-mechanical fields (Eq. (32)) derived in this section can be reduced to the following

characteristic equation
Cð1Þ
44 sinðkaÞ cosðkbÞ þ Cð2Þ

44 cosðkaÞ sinðkbÞ ¼ 0 ð35aÞ
eð1Þ11 sinðkaÞ cosðkbÞ þ eð2Þ11 cosðkaÞ sinðkbÞ ¼ 0 ð35bÞ
and the decoupled electro-mechanical field
shz ¼ Krrk�1fhzðhÞ ð36aÞ
srz ¼ Krrk�1frzðhÞ ð36bÞ
Dh ¼ KDrk�1ghðhÞ ð37aÞ
Dr ¼ KDrk�1grðhÞ ð37bÞ
where the angular functions fizðhÞ and giðhÞ, i ¼ r, h, have the same forms in Eqs. (28) and (29). The

characteristic equation (Eq. (35)) and the stress field (Eq. (36)) are identical to the results derived by Ma and
Hour (1989). The procedures of the proof are lengthy and will not be stated in this paper.
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4. Conclusions

In this paper, the explicit forms of singular electro-mechanical field for a piezoelectric bonded wedge

subjected to antiplane shear have been derived analytically. Because of the piezoelectric effect, the singular
behavior is different from that of an elastic bonded wedge. The conclusions are summarized as follows:

1. The singularity order of a piezoelectric bi-material bonded wedge is always complex if the following three

conditions hold simultaneously: (a) A1 and A2 are both complex; (b) a 6¼ b; and (c) both a and b are non-

zero. If at least one condition does not hold, the singularity order is real. It is quite different from an

elastic bonded wedge, in which the antiplane singularity orders are always real.

2. If a ¼ b, the singularity order is always real. In addition, the eigenvalue is a double-root and the rank of

the characteristic matrix ½M 	 is 6. Therefore, there are two independent intensity factors (Kr and KD) in
the electro-mechanical field. The present solutions are compared well with the case of an interface crack

between two piezoelectric materials.

3. Since the rank of the characteristic matrix ½M 	 is 7 for a 6¼ b, the stress and electrical displacement inten-

sity factors are dependent on each other.

4. The electro-mechanical field of case a 6¼ b can be reduced to the cases of a ¼ b and/or e15 ¼ 0 by

using the perturbation method. When e15 ¼ 0, the wedge is decoupled into the electrical and mechanical

fields. The results are exactly the same as the antiplane singular field of an isotropic bonded wedge.
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